About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Axion searches in the SuperDAWA experiment with superconducting magnets and microwave radiometry

Axion searches in the SuperDAWA experiment with superconducting magnets and microwave radiometry

Corpuscular physics and outer space Numerical simulation Particle physics Technological challenges

Abstract

Axions are hypothetical particles that could both explain a fundamental problem in strong interactions (the conservation of CP symmetry in QCD) and account for a significant fraction of dark matter. Their direct detection is therefore a key challenge in both particle physics and cosmology.

The SuperDAWA experiment, currently under construction at CEA Saclay, uses superconducting magnets and a microwave radiometer placed inside a cryogenic cryostat. This setup aims to convert potential axions into measurable radio waves, with frequencies directly linked to the axion mass.

The proposed PhD will combine numerical modeling with hands-on experimental work. The student will develop a detailed model of the experiment, including magnetic fields, radio signal propagation, and detector electronics, validated step by step with real measurements. Once the experiment is running, the PhD candidate will participate in data-taking campaigns and their analysis.

This project provides a unique opportunity to contribute to a state-of-the-art experiment in experimental physics, with direct implications for the global search for dark matter.

Laboratory

Institut de recherche sur les lois fondamentales de l’univers
Service de Physique des Particules
Groupe Cosmologie (GCOSMO)
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down