



Axions are hypothetical particles that could both explain a fundamental problem in strong interactions (the conservation of CP symmetry in QCD) and account for a significant fraction of dark matter. Their direct detection is therefore a key challenge in both particle physics and cosmology.
The SuperDAWA experiment, currently under construction at CEA Saclay, uses superconducting magnets and a microwave radiometer placed inside a cryogenic cryostat. This setup aims to convert potential axions into measurable radio waves, with frequencies directly linked to the axion mass.
The proposed PhD will combine numerical modeling with hands-on experimental work. The student will develop a detailed model of the experiment, including magnetic fields, radio signal propagation, and detector electronics, validated step by step with real measurements. Once the experiment is running, the PhD candidate will participate in data-taking campaigns and their analysis.
This project provides a unique opportunity to contribute to a state-of-the-art experiment in experimental physics, with direct implications for the global search for dark matter.

