The CEA welcomes 1,600 doctoral PhD students to its laboratories each year.
Thesis
Home / Thesis / Bayesian Inference with Differentiable Simulators for the Joint Analysis of Galaxy Clustering and CMB Lensing
Bayesian Inference with Differentiable Simulators for the Joint Analysis of Galaxy Clustering and CMB Lensing
Artificial intelligence & Data intelligenceAstrophysicsCorpuscular physics and outer spaceTechnological challenges
Abstract
The goal of this PhD project is to develop a novel joint analysis for the DESI galaxy clustering
and Planck PR4/ACT CMB lensing data, based on numerical simulations of the surveys and
state-of-the-art machine learning and statistical inference techniques. The aim is to overcome
many of the limitations of the traditional approaches and improve the recovery of cosmological
parameters. The joint galaxy clustering - CMB lensing inference will significantly improve
constraints on the growth of structure upon DESI-only analyses and refine even more the test of general relativity.
Laboratory
Institut de recherche sur les lois fondamentales de l’univers
Nous utilisons des cookies pour vous garantir la meilleure expérience sur notre site web. Si vous continuez à utiliser ce site, nous supposerons que vous en êtes satisfait.OKNonPolitique de confidentialité