



An increasing number of safety-critical systems now rely on artificial intelligence functions that must operate under strict energy constraints and in environments characterized by data scarcity and high uncertainty. However, conventional deterministic AI approaches provide only point estimates and lack principled uncertainty quantification, which can lead to unreliable or unsafe decisions in real-world deployment.
This PhD is positioned within the emerging field of Bayesian electronics, which aims to implement probabilistic inference directly in hardware by leveraging the intrinsic stochasticity of nanoscale devices to represent and manipulate probability distributions. While memristive devices have previously been explored for Bayesian inference, their limited endurance and high programming energy remain critical bottlenecks for on-chip learning.
The objective of this thesis is to investigate ferroelectric field-effect memory transistors (FeMFETs) as building blocks for hardware Bayesian neural networks. The work will involve characterizing and modeling the exploitable ferroelectric randomness for sampling and probabilistic weight updates, designing Bayesian neuron and synapse architectures based on FeMFETs, and evaluating their robustness, energy efficiency, and system-level performance for safety-critical inference under uncertainty.

