



The Diamond Anvil Cell equipped with piezoelectric actuators, or d-CED, is an innovative device that can generate dynamic compressions and decompressions over a wide range of pressure variation rates. The d-CED thus enables finely controlled dynamic stresses to be applied, with (de)compression rates that can vary over several orders of magnitude along isothermal paths. This paves the way for the creation of reference databases for the validation of microscopic mechanisms. Furthermore, the compression or decompression rates can be equated to ultra-fast heating or cooling rates of the sample, offering the possibility of exploring, in a highly controlled manner, certain phenomena still debated in the literature, such as the maximum stability of a solid beyond its melting point.
The objective of this thesis is to exploit the new possibilities offered by d-CED to demonstrate new phenomena or gain a detailed understanding of certain effects discussed in the literature, by performing ultra-fast temperature variations. A first application will consist of studying the nucleation kinetics of rare gases (Ar, Ne, Kr) as a function of the compression rate, and comparing them with recent measurements made at the XFEL in cryogenic jets. A second objective will be to study chemical changes, with an initial study focusing on the modification of the reactivity of nitromethane, a reference explosive. Another area of study will concern the synthesis of new molecular compounds from mixtures of dense molecular fluids (N2, H2, O2).

