About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Blended positive electrodes in solid-state batteries: Effect of the electrode fabrication process on electrochemistry

Blended positive electrodes in solid-state batteries: Effect of the electrode fabrication process on electrochemistry

Condensed matter physics, chemistry & nanosciences Engineering sciences Materials and applications Physical chemistry and electrochemistry

Abstract

The development of cost-effective, high-energy-density solid-state batteries (SSBs) is essential for the large-scale adoption of next-generation energy storage technologies. Among various cathode candidates, LiFePO4 (LFP) and LiFe1??Mn?PO4 (LFMP) offer safety and cost advantages but suffer from low working voltages and limited kinetics compared to Ni-rich layered oxides such as LiNi0.85Mn0.05Co0.1O2 (NMC85). To balance energy density, rate capability, and stability, this PhD project aims to develop blended cathodes combining LFMP and NMC85 in optimized ratios for solid-state configurations employing sulfide electrolytes (Li6PS5Cl). We will investigate how fabrication methods- including slurry-based electrode processing and binder-solvent optimization- affect the electrochemical and structural performance. In-depth operando and in situ characterizations (XRD, Raman, and NMR) will be conducted to elucidate lithium diffusion, phase transition mechanisms, and redox behavior within the blended systems. Electrochemical impedance spectroscopy (EIS) and titration methods will quantify lithium kinetics across various states of charge. By correlating processing conditions, microstructure, and electrochemical behavior, this research seeks to identify optimal cathode compositions and manufacturing strategies for scalable, high-performance SSBs. Ultimately, the project aims to deliver a comprehensive understanding of structure–property relationships in blended cathodes, paving the way for practical solid-state battery technologies with enhanced safety, stability, and cost efficiency.

Laboratory

Institut rayonnement et matière de Saclay
Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie
Laboratoire d’étude des éléments légers
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down