About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Calibration of the new High-Angle Time Projection Chambers of the T2K Experiment and Measurement of CP Violation in Neutrino Oscillations

Calibration of the new High-Angle Time Projection Chambers of the T2K Experiment and Measurement of CP Violation in Neutrino Oscillations

Corpuscular physics and outer space Particle physics

Abstract

The proposed thesis project focuses on studying neutrino oscillations, a key quantum phenomenon for exploring New Physics beyond the Standard Model. These oscillations, compared between neutrinos and antineutrinos, could shed light on one of the most fundamental questions in particle physics: the origin of the matter-antimatter asymmetry in the Universe.

The T2K experiment, located in Japan, studies these oscillations by generating an intense beam of muon neutrinos (and antineutrinos). This beam is measured at two points: a near detector, used to reduce systematic uncertainties related to the neutrino flux and interaction models, and a far detector (Super-Kamiokande), responsible for measuring the disappearance of muon neutrinos and the appearance of electron neutrinos after oscillations.

The thesis project is divided into two parts. The first part will involve calibrating the new detectors (new time projection chambers using resistive MicroMegas technology) to measure the neutrino energy spectrum and assess the associated systematic uncertainties. The second part will focus on analyzing the newly collected data, allowing for more precise measurements of oscillation parameters, improving the understanding of neutrino-nucleus interactions, and measuring CP violation in neutrino oscillations with 3 sigma significance in the case of maximal violation, as indicated by the latest T2K results, and ultimately 5 sigma in the future Hyper-Kamiokande experiment, which will use the same beam and near detector as T2K.

Laboratory

Institut de recherche sur les lois fondamentales de l’univers
Service de Physique des Particules
Groupe Neutrinos Accélérateurs (GNA)
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down