About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Characterization of motor recovery in stroke patients during a BCI-guided rehabilitation

Characterization of motor recovery in stroke patients during a BCI-guided rehabilitation

Engineering sciences Health and environment technologies, medical devices Mathematics - Numerical analysis - Simulation Technological challenges

Abstract

Brain-computer interfaces (BCIs) make it possible to restore lost functions by allowing individuals to control external devices through the modulation of their brain activity. The CEA has developed a BCI technology based on the WIMAGINE implant, which records brain activity using electrocorticography (ECoG), along with algorithms for decoding motor intentions. This technology was initially tested for controlling robotic effectors such as exoskeletons and spinal cord stimulation devices to compensate for severe motor impairments. While this initial paradigm of substitution and compensation is promising, a different application potential is now emerging: functional recovery through BCI-guided rehabilitation. Current literature suggests that BCIs, when used intensively and in a targeted manner, can promote neural plasticity and, in turn, improve residual motor abilities. In particular, ECoG-based implanted BCIs could offer significant therapeutic outcomes. The objective of this thesis is therefore to assess the potential of CEA's BCI technology to enhance patients' residual motor functions through neural plasticity.
This work will be approached through a rigorous and multidisciplinary scientific methodology, including a comprehensive review of the scientific literature, the setup and execution of experimentations with patients, the algorithmic development of tools for monitoring and analyzing patient progress, and the publication of significant results in high-level scientific journals.
This PhD is intended for a student specializing in biomedical engineering, with expertise in signal processing and the analysis of complex physiological data, as well as experience in Python or Matlab. A strong interest in clinical experimentation and neuroscience will also be required. The student will work within a multidisciplinary team at CLINATEC, contributing to cutting-edge research in the field of BCIs.

Laboratory

Département des Technologies pour l'Innovation en Santé (LETI)
Service de Recherche de Biomédicales en Neurotechnologie
Laboratoire de Conception et Dévelopement des Dispositifs Médicaux
Université Grenoble Alpes
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down