Quantum fluctuations induce conservative macroscopic forces such as the Casimir effect. They could also cause dissipative forces, termed vacuum (or quantum) friction. Up to now, this friction effect has been calculated with consideration of the electromagnetic fluctuations only, i.e. without taking into account the Dirac Sea. This project is devoted to the extension of our research in this direction: electrons, as main contributors of the matter-field interaction, also interact with electron-positron virtual pairs in the quantum vacuum. How much of quantum friction, at zero or finite vacuum temperature, could be due to this type of interaction? A first step will be adapting the present semi-classical framework to include vacuum polarization and pair creation. In doing so, one will encounter finite frequency cut-offs, traditionally linked to virtual pair creation; thus one will determine a friction component linked with the finite cut-off of Fourier integrals. On this research path, one shall pay attention to maintaining the mathematical coherence of the whole framework. A longer-term goal remains a complete and consistent quantum relativistic treatment of quantum friction at the atomic level.