About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Defense of scene analysis models against adversarial attacks

Defense of scene analysis models against adversarial attacks

Artificial intelligence & Data intelligence Cyber security : hardware and sofware Technological challenges

Abstract

In many applications, scene analysis modules such as object detection and recognition, or pose recognition, are required. Deep neural networks are nowadays among the most efficient models to perform a large number of vision tasks, sometimes simultaneously in case of multitask learning. However, it has been shown that they are vulnerable to adversarial attacks: Indeed, it is possible to add to the input data some perturbations imperceptible by the human eye which undermine the results during the inference made by the neural network. However, a guarantee of reliable results is essential for applications such as autonomous vehicles or person search for video surveillance, where security is critical. Different types of adversarial attacks and defenses have been proposed, most often for the classification problem (of images, in particular). Some works have addressed the attack of embedding optimized by metric learning, especially used for open-set tasks such as object re-identification, facial recognition or image retrieval by content. The types of attacks have multiplied: some universal, other optimized on a particular instance. The proposed defenses must deal with new threats without sacrificing too much of the initial performance of the model. Protecting input data from adversarial attacks is essential for decision systems where security vulnerabilities are critical. One way to protect this data is to develop defenses against these attacks. Therefore, the objective will be to study and propose different attacks and defenses applicable to scene analysis modules, especially those for object detection and object instance search in images.

Laboratory

Département Intelligence Ambiante et Systèmes Interactifs (LIST)
Service Intelligence Artificielle pour le Langage et la Vision
Laboratoire Vision et Apprentissage pour l’analyse de scènes
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down