Skills:
Technical: heat transfer, structural mechanics, hydraulics, materials, numerical simulation
Non-technical: writing, interpersonal skills, English
Prerequisites: this thesis will be preceded by a 6-month internship. Contact the supervisor for more details about the topic.
Context:
This PhD focuses on the design and optimization of an innovative breeding blanket for compact nuclear fusion reactors. Nuclear fusion offers a promising solution to produce clean and sustainable energy. However, it requires the continuous production of tritium, a rare isotope, through breeding blankets surrounding the plasma. These blankets must also extract the generated heat. In compact reactors, technical constraints are increased due to extremely high heat fluxes and severe thermal and neutron conditions.
The PhD will take place within the Design, Calculations, and Realizations Office at CEA Saclay, a recognized player in the development of breeding blankets at the European level. This office has designed several concepts, such as HCLL (Helium Cooled Lithium Lead) and BCMS (Breeder and Coolant Molten Salt), two types of blankets based on helium or molten salt cooling systems.
PhD description:
The research program will take place over three years. The first year will focus on studying existing blankets, identifying the constraints of compact reactors, selecting appropriate materials and heat transfer fluids, and developing a preliminary design of the blanket. The following years will be dedicated to multiphysics modelling (thermal, mechanical, neutron), followed by iterative optimization of the concept to improve its performance.
Perspectives:
The results of this PhD will have a significant impact on the development of compact fusion reactors by ensuring tritium production and structural integrity. This work could also open new avenues for future research on even more advanced breeding blankets, contributing to the growth of sustainable and commercially viable fusion energy.