About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Design and optimization of color routers for image sensors

Design and optimization of color routers for image sensors

Engineering sciences Optics - Laser optics - Applied optics Photonics, Imaging and displays Technological challenges

Abstract

Color routers represent a promising technology that could revolutionize the field of image sensors. Composed of nanometricstructures called metasurfaces, these devices allow the modification of light propagation to improve the quantum efficiency of pixels. Thanks to recent technical advances, it is now possible to design and manufacture these structures, paving the way for more efficient image sensors.
The thesis topic focuses on the design and optimization of color routers for image sensors. Several research avenues will be explored, such as the implementation of new metasurfacegeometries (`freeform`) or innovative configurations to reduce pixel pitch (0.5µm or 0.6µm). Various optimization methods can be used, such as the adjointmethod, machine learning, or the use of auto-differentiable solvers. The designs must be resilient to the angle of light incidence and expected variations during manufacturing. After this simulation phase, the proposed structures will be manufactured, and the student will have the mission to characterize the chips and analyze the obtained results (quantum efficiency, modulation transfer function...).
This thesis will be co-supervised by STMicroelectronics and CEA LETI in Grenoble. The student will be integrated into the teams of engineer-researchers working on this project. He/she will be led to collaborate with various specialists in various fields such as lithography and optical characterization.
The student's main activities:
- Optical simulation using numerical methods (FDTD, RCWA)
- Development of optimization methodologies for metasurfacedesign (adjointmethod, topological optimization...)
- Electro-optical characterization and analysis of experimental data

Laboratory

Département d’Optronique (LETI)
Service des Composants pour l’Imagerie
Laboratoire d’Imagerie sur Silicium
Université Grenoble Alpes
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down