About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Design and reliability of modular architecture for reconfigurable and repairable PV panels

Design and reliability of modular architecture for reconfigurable and repairable PV panels

Electronics and microelectronics - Optoelectronics Engineering sciences Solar energy for energy transition Technological challenges

Abstract

The integration of photovoltaic modules has become a challenge for adaptation to climate change, notably with the installation of specific PV modules in urban spaces, on vehicles or on agricultural farms. These modules are required to operate in more complex situations presenting high temporal variability and changing exposure to the sun. The scientific challenges of the project are to determine the conditions needed for optimizing the performance of PV modules regarding these external disturbances by the study of reconfigurable electrical module architectures. A reliability model will be developed to integrate the impact of the system architecture, in order to guarantee an improved level of reliability. In-depth work will be carried out on the entire PV module, from cell technologies to the final electrical characteristics requested, including electrical switching technologies. In a second phase, we will develop a design methodology in conjunction with a precise state of the art of available power switching technologies. The method will be applied to a use case responding primarily to the problem of shading and/or localised failure of the PV module. Finally, the proposed architectures will be evaluated by life cycle analysis. The designs authorizing maintenance or replacement of certain elements will be detailed and compared to the performance of usual modules.

Laboratory

Département des Technologies Solaires (LITEN)
Service des Modules et Systèmes PV
Laboratoire des applications modules
Université Grenoble Alpes
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down