You will design and fabricate laser and LED sources based on GeSn alloy in a cleanroom environment. These novel group-IV direct-bandgap materials, epitaxially grown on 200 mm Si wafers, are considered CMOS-compatible and hold great promise for the development of low-cost mid-infrared light sources. You will characterize these light sources using a mid-infrared optical test bench, with the goal of their future integration into a Germanium/Silicon photonic platform. Additionally, you will assess the feasibility of gas detection within a concentration range from a few dozen to several thousand ppm.
The objectives of the PhD are to:
• Design efficient GeSn (Si) stack structures that confine both electrons and holes while providing strong optical gain.
• Evaluate the optical gain under optical pumping and electrical injection at different strain levels and doping concentrations.
• Design and fabricate laser cavities with strong optical confinement.
• Characterize the fabricated devices under optical and electrical injection as a function of their strain state at both room and low temperatures.
• Achieve electrically pumped continuous-wave group-IV lasers.
• Understand the physical phenomena that may impact the material and device performance for light emission.
• Characterize the best-fabricated devices for low-cost environmental gas detection applications.
This work will involve collaborations with international laboratories working on the same dynamic research topic.