About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Design of asynchronous algorithms for solving the neutron transport equation on massively parallel and heterogeneous architectures

Design of asynchronous algorithms for solving the neutron transport equation on massively parallel and heterogeneous architectures

Computer science and software Engineering sciences Numerical simulation Technological challenges

Abstract

This PhD thesis work aims at designing an efficient solver for the solution to the neutron transport equation in Cartesian and hexagonal geometries for heterogeneous and massively parallel architectures. This goal can be achieved with the design of optimal algorithms with parallel and asynchronous programming models.
The industrial framework for this work is in solving the Boltzmann equation associated to the transportof neutrons in a nuclear reactor core. At present, more and more modern simulation codes employ an upwind discontinuous Galerkin finite element scheme for Cartesian and hexagonal meshes of the required domain.This work extends previous research which have been carried out recently to explore the solving step ondistributed computing architectures which we have not yet tackled in our context. It will require the cou-pling of algorithmic and numerical strategies along with programming model which allows an asynchronousparallelism framework to solve the transport equation efficiently.
This research work will be part of the numerical simulation of nuclear reactors. These multiphysics computations are very expensive as they require time-dependent neutron transport calculations for the severe power excursions for instance. The strategy proposed in this research endeavour will decrease thecomputational burden and time for a given accuracy, and coupled to a massively parallel and asynchronousmodel, may define an efficient neutronic solver for multiphysics applications.
Through this PhD research work, the candidate will be able to apply for research vacancies in highperformance numerical simulation for complex physical problems.

Laboratory

Département de Modélisation des Systèmes et Structures
SERVICE DE GENIE LOGICIEL POUR LA SIMULATION
Laboratoire de Calcul Intensif et d'Analyse Numérique
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down