About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Deterministic neutron calculation of soluble-boron-free PWR-SMR reactors based on Artificial Intelligence

Deterministic neutron calculation of soluble-boron-free PWR-SMR reactors based on Artificial Intelligence

Artificial intelligence & Data intelligence Engineering sciences Technological challenges Thermal energy, combustion, flows

Abstract

In response to climate challenges, the quest for clean and reliable energy focuses on the development of small modular reactors using pressurized water (PW-SMR), with a power range of 50 to 1000 MWth. These reactors aimed at decarbonizing electricity and heat production in the coming decade. Compared to currently operating reactors, their smaller size can simplify design by eliminating the need for soluble boron in the primary circuit water. Consequently, control primarily relies on the level of insertion of control rods, which disturb the spatial power distribution when control rods are inserted, implying that power peaks and reactivity are more difficult to manage than in a standard PWR piloted with soluble boron. Accurately estimating these parameters poses significant challenges in neutron modeling, particularly regarding the effects of the history of control rod insertion on the isotopic evolution of the fuel. A thesis completed in 2022 explored these effects using an analytical neutron model, but limitations persist as neutron absorbers movements are not the only phenomena influencing the neutron spectrum. The proposed thesis seeks to develop an alternative method that enhances robustness and further reduces the calculation biases. A sensitivity analysis will be conducted to identify key parameters, enabling the creation of a meta-model using artificial intelligence to correct biases in existing models. This work, conducted in collaboration with IRSN and CEA, will provide expertise in reactor physics, numerical simulations, and machine learning.

Laboratory

Département Etude des Réacteurs
Service de Physique des Réacteurs et du Cycle
Laboratoire d’études des cœurs et du cycle
Aix-Marseille Université
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down