About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Development and validation of surface haptics machine learning algorithms for touch and dexterity assessment in neurodevelopmental disorders

Development and validation of surface haptics machine learning algorithms for touch and dexterity assessment in neurodevelopmental disorders

Artificial intelligence & Data intelligence Health and environment technologies, medical devices Technological challenges

Abstract

The aim of this PhD thesis is to develop new clinical assessment methods using surface haptics technologies, developed at CEA List, and machine learning algorithms for testing and monitoring tactile-motor integration. In particular, the thesis will investigate and validate the development of a multimodal analytics pipeline that converts surface haptics signals and dexterity exercises inputs (i.e. tactile stimulation events, finger kinematics, contact forces, and millisecond timing) into reliable, interpretable biomarkers of tactile perception and sensorimotor coupling, and then classify normative versus atypical integration patterns with clinical fidelity for assessment.
Expected results: a novel technology and models for the rapid and feasible measurement of tactile-motor deficits in clinical setting, with an initial validation in different neurodevelopmental disorders (i.e. first-episode psychosis, autism spectrum disorder, and dyspraxia). The methods developed and data collected will provide:
(1) an open, versioned feature library for tactile–motor assessment;
(2) classifiers with predefined operating points (sensitivity/specificity);
(3) and an on-device/edge-ready pipeline, i.e. able to run locally on a typical tablet hardware whilst meeting constraints on latency, computing, and data privacy. Success will be measured by reproducibility of features, clinically meaningful effect sizes, and interpretable decision logic that maps back to known neurophysiology rather than artefacts.

Laboratory

Département Intelligence Ambiante et Systèmes Interactifs (LIST)
Service Interactions et Réseaux
Laboratoire d’Interfaces Sensorielles & Ambiantes
Université de Paris
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down