About us
Espace utilisateur
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Home   /   Thesis   /   Development of a predictive power model for a photovoltaic device under spatial constraints

Development of a predictive power model for a photovoltaic device under spatial constraints

Engineering sciences Materials and applications Solar energy for energy transition Technological challenges


CEA is developing new cell and module architectures and simulation tools to assess the electrical performance of photovoltaic (PV) systems in their operating environment. One of these models, called CTMod (Cell To Module), takes into account not only the different materials making up the module, but also the different cell architectures. For space applications, the community wants to use terrestrial silicon-based technologies that can be integrated on flexible PVAs (Photovoltaic Assembly). The space environment imposes severe constraints. A relevant evaluation of performance at the start and end of a mission is therefore essential for their dimensioning.
The aim of this thesis is to correlate physical models of radiation-matter degradation in space with electrical models of photovoltaic cells. Performance degradations linked to the various electron, proton and ultraviolet (UV) irradiations of the space environment will be evaluated and validated experimentally. Linked to the CTMod Model, this new approach, never seen in the literature, will able to get a more accurate understanding of interactions between radiations and PVAs. These degradations result from non-ionizing energy deposition phenomena, quantified by the defect dose per displacement, and ionizing ones quantified by the total ionizing dose for protons and electrons. In the case of UV, the excitation of electrons in matter generates chain breaks in organic materials and colored centers in inorganic materials. Initially, the solar cell used in the model will be a Silicon cell, but the model can be extended to include other types of solar cell under development, such as perovskite-based cells.


Département des Technologies Solaires (LITEN)
Service des Modules et Systèmes PV
Laboratoire des applications modules
Toulouse III
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down