The proposed thesis work consists in developing phase modulators based on the integration of IIIV-Silicon hybrid capacitors in silicon waveguides, at a wavelength of 1.55µm to meet the emerging demands of photonics (optical computing on chip, LIDAR). Unlike telecom/datacom applications, which have enabled the emergence of integrated silicon photonics, these new application fields involve circuits that require a very large number of phase modulators. All-silicon modulators based on PN junctions, which have optical losses of several dB and centimeter sizes, are a bottleneck to the emergence of these applications.
IIIV-Si hybrid capacitors can allow, thanks to the electro-optical properties of IIIV materials, to reduce the size of silicon modulators by an order of magnitude and improve their energy efficiency (reduction of optical losses). First functional modulators have been designed, fabricated and tested. The first step will be to study in details their performance (losses, efficiency, speed, hysteresis) and to understand their limitations, using the available photonic simulation tools and electrical characterization methods (C(V), interface charge density, DLTS, etc.). In particular, this will involve better understanding the impact of the manufacturing process on the electro-optical properties. In a second step, the doctoral student will propose improvements to the designs and manufacturing processes (in collaboration with our microfabrication specialists), and will validate them experimentally using hybrid capacities and modulators integrating these capacities.