



Retinal tears then detachment, a serious eye condition (20–25 cases per 100,000 in France each year), requires urgent surgery. Current treatments involve removing the vitreous, using gas as a tamponade agent, and sealing tears with laser. However, this method presents drawbacks, including patient restrictions (e.g., prolonged lying down) and complications (e.g., cataracts). Injectable hydrogels are being explored as alternative tamponade agents, but they do not display adhesive properties to suture the tears and laser treatment is still required. Surgical glues have also been tested, but cyanoacrylate-based adhesives are toxic, fibrin-based sealants are hard to use in the eye, and current hyaluronan (HA)-based materials lack sufficient stability and adhesion.
This PhD project aims to develop a sterile, injectable HA-based hydrogel with strong adhesive properties to seal retinal tears. Key requirements include biocompatibility, injectability (30G needle), tissue adhesiveness (1.5–3.7 N), and rapid delivery (within 1 hour). Our group has previously developed an injectable HA hydrogel with dynamic crosslinking, offering long-term stability, biocompatibility, and optical transparency. To confer it with tissue-adhesion properties, two strategies will be tested: (1) addition of tissue-adhesive tannic acid in the hydrogel formulation, or (2) grafting tissue-adhesive groups onto the HA backbone. The hydrogel will be tested for its biocompatibility and adhesiveness in preclinical eye models.
This innovative hydrogel could simplify retinal surgery, reduce complications, lower costs, and improve recovery. Beyond retinal repair, it may have applications in cornea surgery and other medical fields.

