About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Development of machine learning algorithms to improve image acquisition and processing in radiological imaging

Development of machine learning algorithms to improve image acquisition and processing in radiological imaging

Engineering sciences Instrumentation Mathematics - Numerical analysis - Simulation

Abstract

The Nuclear Measurements Laboratory at the LNPA (Laboratory for the Study of Digital Technologies and Advanced Processes) in Marcoule consists of a team specializing in nuclear measurements in the field. Its activities are divided between developing measurement systems and providing technical expertise to CEA facilities and external partners (ORANO, EDF, IAEA).
The LNPA has been developing and using radiological imagers (gamma and alpha) for several years. Some of the developments have resulted in industrial products, while other imagers are still being developed and improved. Alpha imaging, in particular, is a process that allows alpha contamination zones to be detected remotely. Locating the alpha source is an important step in glove boxes, whether for a cleanup and dismantling project, for maintenance during operation, or for the radiation protection of workers. The alpha camera is the tool that makes alpha mapping accessible remotely and from outside glove boxes.
The objective of the thesis is to develop and implement mathematical prediction and denoising solutions to improve the acquisition and post-processing of radiological images, and in particular alpha camera images.
Two main areas of research will be explored in depth:
- The development of real-time or post-processing image denoising algorithms
- The development of predictive algorithms to generate high-statistics images based on samples of real images.
To do this, an experimental and simulation database will be established to feed the AI algorithms.
These two areas of research will be brought to fruition through the creation of a prototype imager incorporating machine learning capabilities and an image acquisition and processing interface, which will be used in an experimental implementation.
Through this thesis, students will gain solid knowledge of nuclear measurements, radiation/matter interaction, and scientific image processing, and will develop a clear understanding of radiological requirements in the context of remediation/decommissioning projects.

Laboratory

Département de recherche sur les Procédés et Matériaux pour les Environnements complexes
Service d’Etudes et d’Intégration des Procédés
Laboratoire d’étude des technologies du numérique et des procédés avancés (L¨NPA)
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down