About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Development of multiplexed photon sources for quantum technologies

Development of multiplexed photon sources for quantum technologies

New computing paradigms, circuits and technologies, incl. quantum Technological challenges

Abstract

Quantum information technologies offers several promises in domains such as computation or secured communications. There is a wide variety of technologies available, including photonic qubits. The latter are robust against decoherence and are particularly interesting for quantum communications applications, even at room temperature. They also offers an alternative to other qubits technologies for quantum computing. For the large-scale deployment of those applications, it is necessary to have cheap, compact and scalable devices. To reach this goal, silicon photonics platform is attractive. It allows implementing key components such as generation, manipulation and detection of photonic qubits.

Solid-state photon generation may occur with different physical processes. Among those, the non-linear photon pair generation has several benefits, such as working at room temperature, the ability to generate heralded single photon, or entangled photon pairs…

You will work on multiplexed parametric photon pair sources in order to surpass the inherent limits of the physical process for generating photon pairs. This will include the development, the fabrication monitoring, and the characterization in the laboratory. In the goal of a full integration on chip, it is necessary to be able to filter effectively unwanted light, in order to keep only photons of interest.

Laboratory

Département d’Optronique (LETI)
Service des Nouvelles Applications de la Photonique
Laboratoire d’Intégration Photonique sur Silicium
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down