About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Development of multiscale and multiview correlation techniques for monitoring large-scale dynamic tests

Development of multiscale and multiview correlation techniques for monitoring large-scale dynamic tests

Engineering sciences Mechanics, energetics, process engineering

Abstract

Experimental data obtained on large-scale specimens plays an important role in the study of structural integrity. Detailed interpretations of these tests require extensive instrumentation of the models. In addition to conventional data acquisition systems, digital image correlation (DIC) techniques can be used to measure displacement fields and extract quantities of interest (e.g. damage field). The aim of this thesis is to develop a multi-view, multi-scale digital image correlation (DI2M) technique for monitoring large-scale dynamic tests. We will focus on the behavior of reinforced concrete structures subjected to dynamic loading. The finite element model updating (FEMU) technique will be used to identify non-linear phenomena in the process zone around cracks. FEMU will be coupled with DI2M analyses, which can also be used to measure boundary conditions. The use of DI techniques to calculate acceleration fields will also be studied. A numerical framework will be proposed for performing modal analysis based on calculated fields. Ultimately, these tools could be integrated into a test/calculation dialogue procedure, providing precise information on the mechanical properties of structural elements and their evolution (e.g. damage) induced by seismic loading.

Laboratory

Département de Modélisation des Systèmes et Structures
Service d’Etudes Mécaniques et Thermiques
Laboratoire d’Etudes de Mécanique Sismique
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down