In the context of industrial digitalization and real-time monitoring, accessing 3D fields (velocity, viscosity, turbulence, concentration, etc.) in real time can be crucial, as local sensor networks are sometimes insufficient to provide a comprehensive view of the system's dynamics. This PhD project aims to investigate a methodology for the real-time reconstruction of fields within an instrumented industrial tank equipped with a mixing system. The proposed approach relies on finite element modeling of the relevant physics within the tank (e.g., fluid dynamics, thermal processes) and model reduction techniques such as physics-based Machine Learning (virtual sensor approach). A key focus of this thesis will also be the development of the tank instrumentation and its associated acquisition chain, both to validate the models and to generate a database for applying the proposed methodology.
Laboratory
Département Systèmes (LETI)
Service Systèmes de Capteurs, électroniques pour l’Energie
Nous utilisons des cookies pour vous garantir la meilleure expérience sur notre site web. Si vous continuez à utiliser ce site, nous supposerons que vous en êtes satisfait.OKNonPolitique de confidentialité