About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Direct metal etch mechanisms study for the BEOL of ultimate SOI nodes

Direct metal etch mechanisms study for the BEOL of ultimate SOI nodes

Emerging materials and processes for nanotechnologies and microelectronics Technological challenges

Abstract

The topic fits into the deployment of silicon technologies at the European level (European chips act), led by CEA-Leti. The focus will be on providing advanced technological building blocks for electrical routing (Back End of Line) of logic and analog devices. The development of increasingly high-performance circuits requires interconnections with more aggressive dimensions. The use of traditional routing materials such as copper is therefore being questioned, as is the conventional back-end of line (BEOL) architecture. This thesis topic will address a breakthrough approach, necessary to achieve these ultimate dimensions.
The objective of this PhD is to develop a BEOL technological building block for the advanced SOI (Silicon on Insulator) nodes through a direct metal etching approach. After a preliminary simulation of the electrical properties of interconnections made with different metals, the work will consist in proposing and implementing an innovative integration. In the first phase, the task will be to determine the design of the electrical test structures and establish an integration scheme. In the second phase, the research work will focus on studying the direct etching of the selected metal using sustainable processes while maintaining the performance of both the processes and the final device. The candidate will be able to rely on the eco-innovation team to perform a comparative life cycle analysis (LCA) of this building block.
The PhD contract is for a duration of 3 years and the research work will take place in the clean rooms of CEA-Leti. To successfully carry out this study, the candidate will have access to state-of-the-art equipment and a cutting-edge work environment.

Laboratory

Département des Plateformes Technologiques (LETI)
Service des procédés de Patterning
Laboratoire Gravure
Université Grenoble Alpes
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down