In pressurized water nuclear reactors, the core components are exposed to both corrosion in the primary medium, pressurized water at around 150 bar and 300°C, and to neutron flux. The stainless steels in the core are damaged by a combination of neutron bombardment and corrosion. In addition, radiolysis of the water can have an impact on the mechanisms and kinetics of corrosion, the reactivity of the medium and, a priori, the mechanisms and kinetics of hydrogen absorption by these materials. This last point, which has not yet been studied, may prove problematic, as hydrogen in solid solution in steel can lead to changes in (and degradation of) the mechanical properties of the steel and induce premature cracking of the part. This highly experimental thesis will focus on the study of the impact of radiolysis phenomena on the corrosion and hydrogen uptake mechanisms of a 316L stainless steel exposed to the primary medium under irradiation. Hydrogen will be traced by deuterium, and neutron irradiation simulated by electron irradiation on particle accelerators. An existing permeation cell will be modified to allow in operando measurement by mass spectrometry of the deuterium permeation flux through a sample exposed to the simulated primary water under radiolysis conditions. The distribution of hydrogen in the material, as well as the nature of the oxide layers formed, will be analysed in detail using state-of-the-art techniques available at the CEA and in partner laboratories. The doctoral student will ultimately be required to (i) identify the mechanisms involved (corrosion and hydrogen entry), (ii) estimate their kinetics and (iii) model the evolution of hydrogen flux in the steel in connection with radiolysis activity.