About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Effects of the combination of ionizing radiation and radio-enhancing molecules in breast cancer models

Effects of the combination of ionizing radiation and radio-enhancing molecules in breast cancer models

Cellular biology, physiology and cellular imaging Life Sciences Radiobiology

Abstract

The proposed program aims to evaluate the efficacy of molecules enhancing the effects of radiotherapy, in in vitro and in vivo models of breast cancer. Two types of molecules, namely an inhibitor of mitochondrial genome maintenance and an inhibitor of the Base Excision Repair pathway, will be tested for radiopotentiation efficacy in the models.
The proposed inhibitors, whether targeting mitochondrial genome maintenance or the BER pathway, are already being investigated in vitro, both in the laboratory and by collaborators. We have shown that inhibition of the mechanisms targeted leads to an impairment in DNA damage repair following genotoxic stress. During this project, we will evaluate the effects of inhibitors on DNA damage repair induced by irradiation of different types (conventional, ultra-high dose rate, even extreme dose rate) and the associated mechanisms.
Variability in response to therapeutic combinations is frequently observed when moving from in vitro to in vivo models. We will therefore evaluate the inhibitors on cell line models well characterized in the laboratory, and corresponding to different breast cancer subtypes. On the other hand, the studies will be completed by a validation of the effects observed in vitro on a murine model of breast cancer. This xenograft model, developed in immunocompetent animals, will enable us to monitor the clinical, histological and immune response of the animals and their tumors, in order to confirm the interest of the molecules for therapeutic application in support of radiotherapy.
The proposed program will benefit from the laboratory's collaborations with physicists and chemists, and IRCM's experimental facilities and platforms (irradiation, animal experimentation, microscopy, cytometry, etc.).

Laboratory

Institut de biologie François JACOB
IRCM_Institut de recherche en radiobiologie cellulaire et moléculaire
Laboratoire de Cancérologie Expérimentale (LCE)
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down