About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Electrocatalyzed Reductive Couplings of Olefins and Carbonyls for the synthesis of sustainable molecules.

Electrocatalyzed Reductive Couplings of Olefins and Carbonyls for the synthesis of sustainable molecules.

Chemistry Condensed matter physics, chemistry & nanosciences Physical chemistry and electrochemistry

Abstract

The LCMCE aims to develop a sustainable method for the reductive functionalization of carbonyl derivatives with olefins via electrochemistry. Traditional redox processes in organic synthesis often rely on thermochemical methods using stoichiometric oxidants or reductants and produce waste products. The electrification of these processes will improve their atom- and energy economy. The novelty of this project lies in the generation of "metal-hydride" catalytic species by cathodic reduction of organometallic complexes in the presence of protons rather than by adding chemical reductants, as described in the literature. Inserting an alkene function into the metal-hydride bond will lead to the formation of reactive intermediates for coupling with electrophilic carbonyls. The substrates for this project have been selected to provide rapid proof of concept and allow the study of more ambitious reactivities, including carboxylation reactions in which CO2 is the electrophile. Particular attention will be paid to the design of homogeneous catalysts and their synergy with electrochemical conditions to lead to active and selective species. The project will also focus on deciphering the mechanisms involved in these reactions.

Laboratory

Institut rayonnement et matière de Saclay
Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie
Laboratoire de Chimie Moléculaire et de Catalyse pour l’Energie
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down