About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Electronic excitations in unidimensional nano-objects: an ab initio description and connection with quantum entanglement

Electronic excitations in unidimensional nano-objects: an ab initio description and connection with quantum entanglement

Condensed matter physics, chemistry & nanosciences Solid state physics, surfaces and interfaces

Abstract

Understanding the electronic properties of valence electrons in nano-objects is not only of fundamental interest but also essential for the design of next-generation optoelectronic devices. In such systems, electron confinement in low-dimensional structures gives rise to unique properties.
These properties are inherently linked to fundamental characteristics of matter and the associated quantum fluctuations. More recently, concepts such as quantum entanglement and Fisher quantum information have been connected to spectroscopic properties. On the other hand, these spectroscopic properties can be probed through experimental techniques, including absorption, photoemission, and inelastic X-ray scattering.
Recently, we demonstrated that the widely used formalism to study isolated nano-objects was not adapted, and that it affected the calculated optical properties. We evidenced, theoretically and experimentally, that for the two-dimensional objects, the optical response contained, beyond the transverse contribution, a resonance coming from the plasmon, which corresponds to a longitudinal response. The role of the interfaces revealed to be determinant. The project of this year is to have a critical analysis of the optical properties of unidimensional objects.
Beyond the fundamental characterization of the 1D dielectric function, this research will explore its connection to quantum entanglement and Fisher quantum information—concepts that, to date, have not been investigated in low-dimensional systems.

Laboratory

Institut rayonnement et matière de Saclay
Laboratoire des Solides Irradiés
Laboratoire des Solides Irradiés
Ecole Polytechnique
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down