



The question of the limit of stability of nuclei, both in terms of proton/neutron asymmetry and in terms of mass, is an important open question in modern nuclear physics. In the region of heavy nuclei, the neutron-deficient actinides present a great interest. Indeed, strong octupolar deformation, giving a pear shape to the nuclei, are predicted and have event been already observed in some isotopes. These deformations seem to play a key role for nuclear stability, for nuclear decay modes, and may also be related to physics beyond the standard model. The main goal oh this thesis will be to pursue the systematic study of these deformations by making use of the brand-new SEASON detector, whose first experiment will take place at the University of Jyväskylä (Finland) in February 2026. The thesis will focus on the analysis of data from the experimental campaign that will occur in summer 2026. Several experiments are foreseen, making use of different beam-target combinations to produce actinides by fusion-evaporation reaction. These actinides will then be sent inside SEASON to perform their decay spectroscopy. Depending on the plannings, another campaign could be scheduled at Jyväskylä in 2027. Finally, the return of the instrument in France to be set up at GANIL-Spiral2 (Caen) coupled to the S3 spectrometer will certainly take place this the thesis period.
The thesis can be co-directed by the university of Jyväskylä.

