About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Fast charging of lithium-ion batteries : Study of the lithium plating phenomenon using operando NMR

Fast charging of lithium-ion batteries : Study of the lithium plating phenomenon using operando NMR

Electrochemical energy storage incl. batteries for energy transition Technological challenges

Abstract

The focus of the thesis is the fast-charging process of lithium-ion batteries and, more specifically, the phenomenon of lithium plating, which will be studied using operando NMR. The target application is electric mobility. The objective of the thesis is to study the dynamics of lithium insertion and lithium metal deposition at the graphite or graphite/silicon-based negative electrode in order to understand the mechanisms leading to plating formation.
Operando NMR is an ideal technique for this study because it offers the unique possibility of simultaneously tracking the signals of the lithiated graphite phases and of deposited lithium during the electrochemical processes. The coupling of electrochemistry and operando NMR will allow us to determine the onset of plating, i.e. the potential of the negative electrode at which deposition begins, and the kinetics of lithium metal deposition and reinsertion at different temperatures and different charging current regimes. We will study Li-ion batteries with a pure graphite negative electrode, but also with graphite-silicon electrodes, in order to investigate the impact of silicon on this phenomenon. The data obtained on the onset mechanisms and the kinetics of lithium metal deposition and reinsertion will be used in a multiphysics model that has already been developed in the laboratory to improve the prediction of plating onset. We will then be able to evaluate the chargeability gains on an NMC 811 // Gr+Si system incorporating optimized electrodes and propose innovative charging protocols.

Laboratory

Département de l’Electricité et de l’Hydrogène pour les Transports (LITEN)
Service Transverses pour Technologies de Conversion électrochimique et électrique
Laboratoire d'Analyse multi-Physiques et Sécurité
Université Grenoble Alpes
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down