About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Field Effect Transistor with Oxide Semiconductor Channel: Multi-Level Synaptic Functions and Analog Neurons

Field Effect Transistor with Oxide Semiconductor Channel: Multi-Level Synaptic Functions and Analog Neurons

Electronics and microelectronics - Optoelectronics Emerging materials and processes for nanotechnologies and microelectronics Engineering sciences Technological challenges

Abstract

This thrilling PhD position invites you to dive into the groundbreaking field of 2T0C (Two-Transistor, Zero-Capacitor) BEOL FET (Back-End-of-Line Field-Effect Transistor) based neurons and synapses, a revolutionary approach poised to transform neuromorphic computing. As a PhD student, you will be at the forefront of research that bridges advanced semiconductor technology with brain-inspired architectures, exploring how these innovative neuron circuits can emulate synaptic functions and enhance data processing efficiency.
Throughout this project, you will engage in hands-on design and characterization of cutting-edge 2T0C neuron circuits, utilizing state-of-the-art tools and techniques. You’ll collaborate with a dynamic, multidisciplinary team of engineers and researchers, tackling exciting challenges related to device performance and energy optimization.
Your work will involve extensive characterization of BEOL FET devices and circuits. You will have the opportunity to propose, specify and design new memory read architectures, that enables the exploration of multi-level synaptic behaviors toward the implementation of more energy and area efficient next-generation neuromorphic systems.
Join us for this unique opportunity to push the boundaries of technology and be part of a transformative journey that could redefine the future of computing! Your contributions could pave the way for breakthroughs in brain-inspired systems, making a lasting impact on the field.

Laboratory

Département Composants Silicium (LETI)
Service des Composants pour le Calcul et la Connectivité
Laboratoire de Composants Mémoires
Aix-Marseille Université
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down