This PhD project focuses on enhancing Large Multimodal Models (LMMs) through the integration of fine-grained and spatio-temporal information into training datasets. While current LMMs such as CLIP and Flamingo show strong performance, they rely on noisy and coarse-grained image-text pairs and often lack spatial or temporal grounding. The thesis aims to develop automatic pipelines to enrich image datasets with geographic and temporal metadata, refine captions using fine-grained semantic descriptors, and balance dataset diversity and compactness by controlling class-wise sample sizes.
Training strategies will incorporate hierarchical class structures and adapt protocols to improve alignment between caption elements and image regions. The work will also explore joint training regimes that integrate fine-grained, spatial, and temporal dimensions, and propose set-based inference to improve the diversity of generated outputs. The enriched datasets and models will be evaluated using existing or newly developed benchmarks targeting contextual relevance and output diversity. The project also addresses challenges in metadata accuracy, efficient model adaptation, and benchmarking methodologies for multi-dimensional model evaluation.
Applications include improved synthetic data generation for autonomous driving, enhanced annotation of media archives through contextual captioning, and better visual reasoning in industrial simulation scenarios.