Rising energy demand and the need to reduce the use of fossil fuels to limit global warming have created an urgent need for clean energy collection technologies. One interesting solution is to use solar energy to produce fuels. Low-cost materials such as semiconductors have been the focus of numerous studies for photocatalytic reactions. Among them, 1D nanostructures are promising because of their interesting properties (high and accessible specific surface areas, confined environments, long-distance electron transport and facilitated charge separation). Imogolite, a natural hollow nanotubes clay, belongs to this category. Its particularity does not lies in its chemical composition (Al, O and Si) but in its intrinsic curvature, which induces a permanent polarization of the wall, effectively separating photo-induced charges. Several modifications of these materials are possible (coupling with metal nanoparticles, functionalization of the internal cavity), enabling their properties to be modulated.We have demonstrated that this clay is a nanoreactor for photocatalytic reactions (H2 production and CO2 reduction) under UV illumination. In order to obtain a useful photocatalyst, it is necessary to extend photon collection into the visible range. One strategy considered is to encapsulate and covalently graft dyes acting as antennae in the cavity. The aim of this thesis is to synthesize imogolites with different internal functionalizations, to study the encapsulation and grafting of dyes into the cavity of these functionalized imogolites, and finally to study the photocatalytic properties.