



Tokamak plasmas are strongly nonlinear systems far from thermodynamic equilibrium, in which instabilities of very different spatial scales coexist, ranging from large-scale macroscopic oscillations to microturbulence. The presence of energetic ions produced by fusion reactions or by auxiliary heating further enhances these instabilities through wave–particle resonances. Microturbulence is responsible for heat and particle transport in the thermal plasma, while instabilities driven by energetic particles can induce their radial transport and, consequently, their losses. Both phenomena degrade the performance of present tokamak plasmas, and possibly also those of burning plasmas such as ITER.
Recent results, however, show that these instabilities, which have long been studied separately, can interact nonlinearly, and that this interaction may lead to an unexpected improvement of plasma confinement.
The objective of this project is to investigate these multiscale interactions using the gyrokinetic code GTC, which is able to simultaneously simulate turbulence and energetic-particle-driven instabilities. This work aims to improve the understanding of the nonlinear mechanisms governing plasma confinement and to identify optimal regimes for future fusion plasmas.

