This thesis focuses on the analysis of hydrogen safety in industries, particularly in cases of accidents where hydrogen is released or generated, such as in nuclear power plants. The interest in hydrogen safety has increased with the use of fuel cells for mobility. In compartmentalized buildings, flammable atmospheres can form, leading to explosions that compromise safety. Flame dynamics are influenced by boundary conditions, especially confined geometries that accelerate the flames. This phenomenon can result in a deflagration-to-detonation transition, causing significant damage to structures through shock waves and combustion waves. Research shows that certain geometric configurations and hydrogen mixtures produce higher pressures, even with low hydrogen concentrations. Three key questions are raised: the influence of geometry on pressure and impulse, the optimal hydrogen concentration, and the possibility of mitigating these effects with sound-absorbing coatings. To answer these questions, experiments and simulations will be conducted to understand and model these phenomena, providing practical tools for safety engineers.