About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Identification versus anonymisation from an embedded client operating on a blockchain

Identification versus anonymisation from an embedded client operating on a blockchain

Cyber security : hardware and sofware Electronics and microelectronics - Optoelectronics Engineering sciences Technological challenges

Abstract

The first worldwide deployment of a blockchain dates back to 2010 with Bitcoin, which introduced a completely digital monetary system and a crypto-currency, bitcoin. Within Bitcoin, all transactions are publicly accessible and traceable, which should generate trust between stakeholders. However, the traceability of transactions, and ultimately of the crypto-currency, does not imply the traceability of users authenticated by an account address, or more precisely by a set of account addresses that are independent of each other. In this context, it can be complex to trace the individuals or legal entities owning the crypto-currency.

Crypto-currency is not the only use case supported by blockchain technology. The deployment of Ethereum in 2014, based on the use of smart contracts, opened up many other uses, in particular the protection of identifying data. In this area, the need for traceability versus furtivity can vary greatly from one use case to another. For example, on a blockchain that records the access of a worker owning an employment certificate to an industrial site, no information enabling the worker to be identified or his activity to be traced should appear. On the other hand, in the case of data collected by IoT sensors and processed by remote Edge devices, traceability of data and processing is desirable.

The thesis proposes to study different techniques for tracing digital assets on a blockchain, for stealthing their owners, and offering the possibility of auditing and identification by an authorised body. The aim is to build embedded devices, Edge or personal possibly embedding artificial intelligence, secured by hardware components, integrating different cryptographic solutions and account, data or identity wallet structures to meet the needs of the different use cases envisaged.

Laboratory

Département Systèmes (LETI)
Service Sécurité des Systèmes Electroniques et des Composants
Laboratoire des Systèmes Embarqués Sécurisés
Université Grenoble Alpes
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down