Using modelling to predict the migration of radioactive species through a well-known porous matrix, such as concrete, is a major challenge for society, particularly in the context of studies linked to the radioactive waste management. Demonstrating that the proposed model is robust through targeted laboratory experiments under extreme chemico-physical conditions is one of the scientific challenges proposed by the CEA as part of this PhD research project.
The young reseacher will be responsible for designing, carrying out and modelling experimental lab-tests on the retention and diffusion of radionuclides of interest in controlled cementitious conditions or under perturbation due to the nitrate plume leading to very high concentrations in the pore solution. The main expected result is to propose a predictive model coupling chemistry under extreme ionic strenght conditions and transport through complex cementitious matrices, validated by experimental data acquired on simple systems.
Surrounded by a team of experts in the field of measuring and modelling radionuclides migration in porous media, the PhD student will be able to develop or extend his/her skills in the following areas: chemistry, analytical chemistry, physico-chemistry, radiochemistry and modelling.