About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   In situ 3D visualization and modeling of grain growth during solidification of 316L steel in welding and additive manufacturing processes

In situ 3D visualization and modeling of grain growth during solidification of 316L steel in welding and additive manufacturing processes

Engineering sciences Mechanics, energetics, process engineering

Abstract

CEA is currently carrying out R&D studies to assess the potential of Additive Manufacturing (AM) processes using wire deposition (WAAM and WLAM) for 316L steel, a material used in the manufacture of a large number of components. These processes are similar to the welding techniques currently used in the manufacture and repair of parts for the nuclear industry. Microstructures with a strong crystallographic texture are often obtained after welding or additive manufacturing, leading to highly anisotropic mechanical behaviors, and the prediction of these microstructures is also a key element in ensuring the reliability of non-destructive testing of parts manufactured in this way.

The aim of the thesis, which will be based on a coupled experimental/simulation approach, is to gain a better understanding of the main physical phenomena involved in solidification, in particular grain growth.

To this end, an original approach to characterizing these phenomena will be conducted on the basis of an innovative instrumented test, with the aim of obtaining a high-resolution quasi-3D view of the molten zone during solidification. The results of the experimental approach will enrich the physical models of solidification, already implemented in a 3D CA-FE (Cellular Automaton-Finite Element) model, combining a Cellular Automata (CA) approach and thermal or multiphysics modeling (FE) of the molten bath, to simulate the solidification microstructures resulting from additive manufacturing and welding processes.

Laboratory

Département de Modélisation des Systèmes et Structures
Service d’Etudes Mécaniques et Thermiques
Laboratoire de Mécanique Systèmes et Simulation
Arts et Métiers ParisTech (ENSAM)
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down