About us
Espace utilisateur
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Home   /   Thesis   /   In situ study of the impact of the electric field on the properties of chalcogenide materials

In situ study of the impact of the electric field on the properties of chalcogenide materials

Condensed matter physics, chemistry & nanosciences Emerging materials and processes for nanotechnologies and microelectronics Solid state physics, surfaces and interfaces Technological challenges


Chalcogenide materials (PCM, OTS, NL, TE, FESO, etc.) are the basis of the most innovative concepts in microelectronics, from PCM memories to the new neuromorphic and spinorbitronic devices (FESO, SOT-RAM, etc.). Part of their operation relies on out-of-equilibrium physics induced by the electronic excitation resulting from the application of an intense electric field. The aim of this thesis is to measure experimentally on chalcogenide thin films the effects induced by the intense electric field on the atomic structure and electronic properties of the material with femtosecond (fs) time resolution. The 'in-operando' conditions of the devices will be reproduced using a THz fs pulse to generate electric fields of the order of a few MV/cm. The induced changes will then be probed using various in situ diagnostic methods (optical spectroscopy or x-ray diffraction and/or ARPES). The results will be compared with ab initio simulations using a state-of-the-art method developed with the University of Liège. Ultimately, the ability to predict the response of different chalcogenide alloys on time scales fs under extreme field conditions will make it possible to optimise the composition and performance of the materials (e- switch effect, electromigration of species under field conditions, etc.), while providing an understanding of the underlying fundamental mechanisms linking electronic excitation, evolution and the properties of the chalcogenide alloys.


Département des Plateformes Technologiques (LETI)
Service des procédés de Dépôts
Université Grenoble Alpes
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down