



Thermal infrared imaging (wavelengths 8-14 µm) is a growing field, particularly in industry, transportation, and environment. It relies on a detection technology, microbolometers, for which CEA-Leti is at the forefront of the global state of the art. Integrating advanced optical functions directly onto the detectors is a very promising approach for improving performance, compactness, and cost in future infrared cameras.
The optical functions under consideration include spectral filtering, polarimetry, wavefront correction, and more. Some aim to enrich the image with information essential for applications such as absolute thermography (temperature and emissivity measurement), identification for automated scene interpretation (machine vision), gas detection, and others.
The proposed work will include the design, fabrication, and electro-optical characterization of functionalized microbolometer arrays. Using 3D electromagnetic simulation tools, the design of these optical functions will take into account the compatibility with our microbolometer technologies and the capabilities of our microfabrication facilities. Fabrication will take place in the CEA-Leti cleanrooms by dedicated personnel, but the candidate will participate in defining and monitoring the work. Finally, optical and electro-optical characterizations will be performed in our laboratory, if necessary with the development of dedicated characterization benches.

