About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Interfaces in super-concentrated aqueous electrolytes: machine learned simulations at the exascale era

Interfaces in super-concentrated aqueous electrolytes: machine learned simulations at the exascale era

Condensed matter physics, chemistry & nanosciences Physical chemistry and electrochemistry

Abstract

Improving the performance of liquid electrolytes is one of today's major challenges in the field of batteries, with the aim of improving efficiency, safety and economy. Recent advances include superconcentrated media such as WIS (“Water-In-Salts”) solutions. Their properties depend crucially on the chemistry and physics of the interfaces between water and ions (Li+ for lithium-ion batteries, but also Na+, K+, Zn2+), both at a distance and close to the electrodes.

Atomic-scale modeling of these superconcentrated liquid electrolytes requires the study of nanoscopic structures and phenomena taking place over long timescales. One relevant solution is to build potentials by machine learning, based on ab initio molecular dynamics (AIMD) trajectories. This method combines an accurate description of the interactions between ions and water molecules, including the breaking and forming of chemical bonds, with fast calculation speed. In particular, the DeePMD kit has recently been successfully ported to GPU architectures, paving the way for calculations on exascale supercomputers (whose power exceeds 10^18 floating-point operations per second).
This theoretical study will be supported by an experimental counterpart, thanks to direct collaboration with a team in the unit specializing in electrochemistry.

Laboratory

Institut rayonnement et matière de Saclay
Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie
Laboratoire Structure et Dynamique par Résonance Magnétique (LCF)
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down