The Dosimetry, Sensors and Instrumentation Laboratory of the CEA/IRESNE Cadarache develops, manufactures and operates neutron flux detectors used in the vicinity of and inside nuclear reactor cores. In addition to conventional detectors (fission chambers, collectrons, etc.), the laboratory is working on innovative measurement methods such as optical detectors, semiconductors, fiber scintillators, etc. As part of this PhD thesis, the laboratory wants to explore the potential of Uranium-doped glasses. These glasses are known to show bright fluorescence under various types of radiations. The main idea of this thesis is to try to exploit this fluorescence to detect the fission reactions induced when the glass is exposed to a neutron flux. This could enable the development of a new generation of optical neutron detectors halfway between a fission chamber and a scintillator.
The thesis will focus on two main topics:
- firstly, a detailed understanding of fluorescence mechanisms, and the synthesis of uranium glass with properties optimized for our needs (sensitivity, emission spectrum, isotopic vector, etc.). Synthesis will be carried out in partner laboratories;
- secondly, the development of a dedicated instrumentation, probably in the form of optical fibers, to test these prototypes in a reactor.