About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Mass transfers and hydrodynamic coupling: experimental investigation and models validation and calibration

Mass transfers and hydrodynamic coupling: experimental investigation and models validation and calibration

Engineering sciences Mechanics, energetics, process engineering Thermal energy, combustion, flows

Abstract

In the context of the energy transition and the crucial role of nuclear power in a low-carbon energy mix, understanding and then mitigating the consequences of any accident leading to a reactor core meltdown, even a partial meltdown, is an imperative research direction.

During a core meltdown accident, a pool of molten material, known as corium, can form at the bottom of the reactor vessel. The composition of the pool can change over time. The corium bath is not homogeneous and can stratify into several immiscible phases. As the overall composition of the corium changes, so do the properties of the different phases. The vertical stratification order of the phases may change, leading to a vertical rearrangement of the phases. During this rearrangement, one phase passes through the other in the form of drops. The order of the phases and their movements are of prime importance, as they have a major influence on the heat flows transmitted to the tank. A better understanding of these phenomena will enable us to improve the safety and design of both current and future reactors.

Initial models have already been produced, but they lack validation and calibration. Prototype experiments are difficult to set up and none are planned in the short term. This thesis proposes to fill this gap by carrying out an experimental study of the phenomenon using a water-based simulating system that allows local instrumentation and large-scale test campaigns. The aim is to validate and calibrate the existing models, and even develop new ones, with a view to capitalising on these results in the PROCOR software platform, which is used to estimate the probability of a reactor vessel breach. The experimental set-up would be built and operated at the LEMTA laboratory at the University of Lorraine, where the PhD student would be seconded. In terms of experiments, two cases will be studied, the single drop case, and the stratified case with drop formation via Rayleigh-Taylor instabilities.

The work will be mainly experimental, with a component involving the use of code for calibration and validation, and may include a modelling component. It will be carried out entirely at the LEMTA laboratory in Nancy. The PhD student will benefit from LEMTA's expertise in the development of simulating experimental devices, fluid transfers and metrology. They will be part of a dynamic environment made up of researchers and other PhD students. The candidate should have knowledge of transfer phenomena (mass transfer in particular), as well as a definite interest in experimental science.

Laboratory

Département de Technologie Nucléaire
Service Mesures et modélisation des Transferts et des Accidents graves
Laboratoire de modélisation des accidents graves
Université de Lorraine
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down