About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Microscopic description of fission fragment properties at scission

Microscopic description of fission fragment properties at scission

Nuclear physics Theoretical physics

Abstract

Fission is one of the most difficult nuclear reactions to describe, reflecting the diversity of dynamic aspects of the N-body problem. During this process, the nucleus explores extreme deformation states leading to the formation of two fragments. While the number of degrees of freedom (DOF) involved is extremely large, the mean-field approximation is a good starting point that drastically reduces the DOF, with elongation and asymmetry being unavoidable. This reduction introduces discontinuities in the successive generation of states through which the nucleus transits, since continuity in energy does not ensure the continuity of states resulting from a variational principle. Recently, a new method based on constraints associated with wave function overlaps has been implemented to ensure this continuity up to and beyond the scission (Coulomb valley). This continuity is crucial for describing the dynamics of the process.

The objective of the proposed thesis is to carry out for the first time a two-dimensional implementation of this new approach in order to take into account the whole collectivity generated by elongation and asymmetry DOF. The theoretical and numerical developments will be done within the framework of the time-dependent generator coordinate method. This type of approach contains a first static step, which consists of generating potential energy surfaces (PES) obtained by constrained Hartree-Fock-Bogoliubov calculations, and a second dynamic step, which describes the dynamic propagation of a wave packet on these surfaces by solving the time-dependent Schrödinger equation. It is from this second step that the observables are generally extracted.

As part of this thesis, the PhD student will:
- as a first step, construct continuous two-dimensional PESs for the adiabatic and excited states. This will involve the three algorithms Link, drop and Deflation
- secondly, extract observables that are accessible using this type of approach: yields, the energy balance at scission, fragment deformation and the average number of emitted neutrons. In particular, we want to study the impact of intrinsic excitations on the fission observables, which are essentially manifested in the descent from the saddle point to the scission.
Finally, these results will be compared with experimental data, in actinides and pre-actinides of interest. In particular, the recent very precise measurements obtained by the SOFIA experiments for moderate to very exotic nuclei should help to test the precision and predictivity of our approaches, and guide future developments of N-body approaches and nuclear interaction in fission.

Laboratory

DPTA
DPTA
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down