Sepsis is a generalized, inappropriate immune response to the presence of microorganisms in the blood. This condition is a major public health problem, accounting for over 11 million deaths worldwide every year. One of the reasons for this high mortality rate is the difficulty in rapidly identifying the pathogen involved, thus delaying the rapid administration of appropriate treatment.
This thesis project, in conjunction with the IHU PROMETHEUS, focuses on the development of miniaturized fluidized beds to concentrate blood biomarkers of sepsis, present in trace amounts in biological matrices. This method, based on the use of microfluidic technology, has the potential to replace lengthy blood culture methods, enabling rapid capture and subsequent identification of enriched targets. Thanks to their high flow rates, very large capture surface area and rapid exchange kinetics, the fluidized beds developed for nucleic acid capture will revolutionize the rapid diagnosis of sepsis.
We propose to develop three axes during this thesis project: 1) development and characterization of the miniaturized fluidized bed; 2) analysis of the system's performance with synthetic DNA; 3) validation of the developed system with model biological samples containing bacterial DNA. This DNA analysis system will pave the way for microfluidic analysis of other sepsis biomarkers.