About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Mining LEP data for fragmentation: A TMD-oriented analysis of pi+pi- pairs in e+e- collisions

Mining LEP data for fragmentation: A TMD-oriented analysis of pi+pi- pairs in e+e- collisions

Corpuscular physics and outer space Particle physics Theoretical physics

Abstract

This project aims to advance our understanding of quark and gluon fragmentation by performing the first-ever extraction of Transverse-Momentum-Dependent Fragmentation Functions (TMDFFs) for charged pions using archived data from LEP experiments like DELPHI or ALEPH.
Fragmentation Functions, which describe how partons form detectable hadrons, are non-perturbative and must be determined from experimental data. TMDFFs provide more detailed information about the transverse momentum of these hadrons. An ideal process to study them is the production of back-to-back pi+pi- pairs in electron-positron annihilations, a measurement surprisingly absent from both past and current experiments.
The project will leverage CERN OpenData initiative to access this historical data. The work is structured in three key steps: first, overcoming the technical challenge of accessing the data using potentially obsolete software; second, extracting relevant physical distributions, such as the transverse momentum of the pion pairs; and third, using Monte Carlo simulations (e.g., Pythia8) to interpret the results.
A crucial part of the analysis will be to identify the observables most sensitive to TMDFFs through simulations. The final data analysis will employ modern techniques to ensure a robust estimate of all uncertainties. Once completed, this pioneering measurement will be incorporated into a global analysis of TMD data, significantly improving the accuracy of TMDFFs and pushing the boundaries of our knowledge of non-perturbative QCD.

Laboratory

Institut de recherche sur les lois fondamentales de l’univers
Service de Physique Nucléaire
Laboratoire structure du nucléon (LSN)
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down