About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   MOCVD growth of 2D ferroelectric In2Se3 films for high density, low consumption nonvolatile memories

MOCVD growth of 2D ferroelectric In2Se3 films for high density, low consumption nonvolatile memories

Emerging materials and processes for nanotechnologies and microelectronics Engineering sciences Materials and applications Technological challenges

Abstract

Room temperature ferroelectric thin films are the key element of high density, low consumption nonvolatile memories. However, with the further miniaturization of the electronics devices beyond the Moore’s law, conventional ferroelectrics suffer great challenge arising from the critical thickness effect, where the ferroelectricity is unstable if the film thickness is reduced to nanometer or single atomic layer limit. Two-dimensional (2D) materials, thanks to their stable layered structure, saturate interfacial chemistry, weak interlayer couplings, and the benefit of preparing stable ultra-thin film at 2D limit, are promising for exploring 2D ferroelectricity and related device applications. So far, proof of concept demonstrating 2D ferroelectricity has predominantly utilized small flakes (less than a few hundred µm) mechanically exfoliated from a bulk crystal. In particular, atomically thin alpha (or gamma)-In2Se3 lamellar semiconductor preserves a ferroelectric character at 2D limit.
Given the imperative for wafer-scale electronics applications, there is a pressing need for large area growth of high quality 2D materials using bottom-up processes. The objective of this PhD project is to develop the growth of lamellar In2Se3 in its alpha or gamma phase crystal structures by chemical vapor phase epitaxy (MOCVD) on large silicon substrates (200 mm). The proof of concept of a ferroelectric memory cell will be performed by directly depositing a metal electrode on the surface of the 2D ferroelectric material without damaging it.

Laboratory

Département des Plateformes Technologiques (LETI)
Service Matériaux et Technologie pour la Photonique (1)
Laboratoire des Matériaux pour la photonique
Grenoble INP
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down