About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Modelling of Thermo-Fluid Phenomena in the Plasma Nozzle of the ELIPSE Process

Modelling of Thermo-Fluid Phenomena in the Plasma Nozzle of the ELIPSE Process

Engineering sciences Numerical simulation Technological challenges Thermal energy, combustion, flows

Abstract

The ELIPSE process (Elimination of Liquids by Plasma Under Water) is an innovative technology dedicated to the mineralization of organic effluents. It is based on the generation of a thermal plasma fully immersed in a water-filled reactor vessel, enabling extremely high temperatures and reactive conditions that promote the complete decomposition of organic compounds.
The proposed PhD research aims to develop a multiphysics numerical model describing the behavior of the process, particularly within the plasma nozzle, a key zone where the high-temperature gas jet from the torch interacts with the injected liquids.
The approach will rely on coupled thermo-aerodynamic modeling, integrating fluid dynamics, heat transfer, phase change phenomena, and turbulence effects. Using Computational Fluid Dynamics (CFD) tools, the study will characterize plasma–liquid interaction mechanisms and optimize the geometry and operating conditions of the process. This modeling will be compared and validated against complementary experimental data obtained from the ELIPSE setup, providing the necessary input for model calibration and validation.
This work will build upon previous research that has led to the development of thermal and hydraulic models of both the plasma torch and the reactor vessel. Integrating the new model within this framework will yield a comprehensive and coherent representation of the ELIPSE process. Such an approach represents a decisive step toward process optimization and industrial scale-up.
The ideal candidate will be a Master’s or final-year engineering student with a background in process engineering and/or numerical simulation, demonstrating a strong interest in physical modeling and computational approaches.
During this PhD, the candidate will develop and strengthen skills in multiphysics numerical modeling, advanced CFD simulation, and thermo-aerodynamic analysis of complex processes. They will also acquire solid experience in waste treatment, a rapidly expanding field with significant industrial and environmental relevance. These skills will provide strong career opportunities in applied research, process engineering, energy, and environmental sectors.

Laboratory

Département de recherche sur les Procédés et Matériaux pour les Environnements complexes (ISEC)
Service d’Etudes et d’Intégration des Procédés
LABORATOIRE DE PYROMETALLURGIE, PYROCHIMIE, PLASMA ET D’INCINERATION
INP Toulouse
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down