About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Monte Carlo methods for sensitivity to geometry parameters in reactor physics

Monte Carlo methods for sensitivity to geometry parameters in reactor physics

Engineering sciences Mathematics - Numerical analysis - Simulation Numerical simulation Technological challenges

Abstract

The Monte Carlo method is considered to be the most accurate approach for simulating neutron transport in a reactor core, since it requires no or very few approximations and can easily handle complex geometric shapes (no discretisation is involved). A particular challenge for Monte Carlo simulation in reactor physics applications is to calculate the impact of a small model change: formally, this involves calculating the derivative of an observable with respect to a given parameter. In a Monte-Carlo code, the statistical uncertainty is considerably amplified when calculating a difference between similar values. Consequently, several Monte Carlo techniques have been developed to estimate perturbations directly. However, the question of calculating perturbations induced by a change in reactor geometry remains fundamentally an open problem. The aim of this thesis is to investigate the advantages and shortcomings of existing geometric perturbation methods and to propose new ways of calculating the derivatives of reactor parameters with respect to changes in its geometry. The challenge is twofold. Firstly, it will be necessary to design algorithms that can efficiently calculate the geometric perturbation itself. Secondly, the proposed approaches will have to be adapted to high-performance computing environments.

Laboratory

Département de Modélisation des Systèmes et Structures
Service des Réacteurs et de Mathématiques Appliquées
Laboratoire de Transport Stochastique et Déterministe
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down