About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Multiplexed whole-body in vivo imaging monitoring of pathogen dissemination and immune responses dynamics in tuberculosis

Multiplexed whole-body in vivo imaging monitoring of pathogen dissemination and immune responses dynamics in tuberculosis

Immunology Life Sciences Medical imaging

Abstract

This thesis is dedicated to set up a multiplexed medical imaging monitoring of pathogen colonization and associated immune responses dynamics at the whole body scale for various infectious diseases. This could provide an innovative and non-invasive tool to better understand dynamics links between immune responses and pathogen distribution throughout the body and potentially provide new biomarkers associated to several diseases. To tackle this issue this thesis would implement such strategy in tuberculosis disease. The main aim is to determine the relationship between Mycobacterium tuberculosis dissemination and associated immune responses across the whole body during the course of tuberculosis infection from early infection to latent or active tuberculosis thanks to innovative multiplexed imaging protocols. The goal of this study is to provide correlations in time and space between local bacterial burden and several immune cell infiltrations (activated macrophages and T lymphocytes subsets) occurring following infection and detected over time by imaging. These findings could then provide, with minimal invasiveness, predictive biomarkers on disease or local granuloma progression and may provide also valuable insight on potential immune targets for future preventive or curative strategies based on modulation of the immune system. To do so, this thesis would take advantage of the preclinical Non-human primate model of tuberculosis developed in France and on our in vivo imaging of pathogens and immune cells expertise in NHPs. Of note, deeper immune cell profiling in samples of interest (imaging guided) will be assessed by spatial or single-cell transcripomic technologies in tissue samples to provide additional readouts on TB pathophysiology and potential treatment efficacy.

Laboratory

Institut de biologie François JACOB
Immunologie des maladies virales et auto-immunes-Infectious Disease Models and Innovative Therapies
Laboratoire "plateforme d’imagerie de l’infection et de l’immunité
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down